Unspent Transaction Output (UTXO) Binance Academy

Ultimate glossary of crypto currency terms, acronyms and abbreviations

I thought it would be really cool to have an ultimate guide for those new to crypto currencies and the terms used. I made this mostly for beginner’s and veterans alike. I’m not sure how much use you will get out of this. Stuff gets lost on Reddit quite easily so I hope this finds its way to you. Included in this list, I have included most of the terms used in crypto-communities. I have compiled this list from a multitude of sources. The list is in alphabetical order and may include some words/terms not exclusive to the crypto world but may be helpful regardless.
2FA
Two factor authentication. I highly advise that you use it.
51% Attack:
A situation where a single malicious individual or group gains control of more than half of a cryptocurrency network’s computing power. Theoretically, it could allow perpetrators to manipulate the system and spend the same coin multiple times, stop other users from completing blocks and make conflicting transactions to a chain that could harm the network.
Address (or Addy):
A unique string of numbers and letters (both upper and lower case) used to send, receive or store cryptocurrency on the network. It is also the public key in a pair of keys needed to sign a digital transaction. Addresses can be shared publicly as a text or in the form of a scannable QR code. They differ between cryptocurrencies. You can’t send Bitcoin to an Ethereum address, for example.
Altcoin (alternative coin): Any digital currency other than Bitcoin. These other currencies are alternatives to Bitcoin regarding features and functionalities (e.g. faster confirmation time, lower price, improved mining algorithm, higher total coin supply). There are hundreds of altcoins, including Ether, Ripple, Litecoin and many many others.
AIRDROP:
An event where the investors/participants are able to receive free tokens or coins into their digital wallet.
AML: Defines Anti-Money Laundering laws**.**
ARBITRAGE:
Getting risk-free profits by trading (simultaneous buying and selling of the cryptocurrency) on two different exchanges which have different prices for the same asset.
Ashdraked:
Being Ashdraked is essentially a more detailed version of being Zhoutonged. It is when you lose all of your invested capital, but you do so specifically by shorting Bitcoin. The expression “Ashdraked” comes from a story of a Romanian cryptocurrency investor who insisted upon shorting BTC, as he had done so successfully in the past. When the price of BTC rose from USD 300 to USD 500, the Romanian investor lost all of his money.
ATH (All Time High):
The highest price ever achieved by a cryptocurrency in its entire history. Alternatively, ATL is all time low
Bearish:
A tendency of prices to fall; a pessimistic expectation that the value of a coin is going to drop.
Bear trap:
A manipulation of a stock or commodity by investors.
Bitcoin:
The very first, and the highest ever valued, mass-market open source and decentralized cryptocurrency and digital payment system that runs on a worldwide peer to peer network. It operates independently of any centralized authorities
Bitconnect:
One of the biggest scams in the crypto world. it was made popular in the meme world by screaming idiot Carlos Matos, who infamously proclaimed," hey hey heeeey” and “what's a what's a what's up wasssssssssuuuuuuuuuuuuup, BitConneeeeeeeeeeeeeeeeeeeeeeeect!”. He is now in the mentally ill meme hall of fame.
Block:
A package of permanently recorded data about transactions occurring every time period (typically about 10 minutes) on the blockchain network. Once a record has been completed and verified, it goes into a blockchain and gives way to the next block. Each block also contains a complex mathematical puzzle with a unique answer, without which new blocks can’t be added to the chain.
Blockchain:
An unchangeable digital record of all transactions ever made in a particular cryptocurrency and shared across thousands of computers worldwide. It has no central authority governing it. Records, or blocks, are chained to each other using a cryptographic signature. They are stored publicly and chronologically, from the genesis block to the latest block, hence the term blockchain. Anyone can have access to the database and yet it remains incredibly difficult to hack.
Bullish:
A tendency of prices to rise; an optimistic expectation that a specific cryptocurrency will do well and its value is going to increase.
BTFD:
Buy the fucking dip. This advise was bestowed upon us by the gods themselves. It is the iron code to crypto enthusiasts.
Bull market:
A market that Cryptos are going up.
Consensus:
An agreement among blockchain participants on the validity of data. Consensus is reached when the majority of nodes on the network verify that the transaction is 100% valid.
Crypto bubble:
The instability of cryptocurrencies in terms of price value
Cryptocurrency:
A type of digital currency, secured by strong computer code (cryptography), that operates independently of any middlemen or central authoritie
Cryptography:
The art of converting sensitive data into a format unreadable for unauthorized users, which when decoded would result in a meaningful statement.
Cryptojacking:
The use of someone else’s device and profiting from its computational power to mine cryptocurrency without their knowledge and consent.
Crypto-Valhalla:
When HODLers(holders) eventually cash out they go to a place called crypto-Valhalla. The strong will be separated from the weak and the strong will then be given lambos.
DAO:
Decentralized Autonomous Organizations. It defines A blockchain technology inspired organization or corporation that exists and operates without human intervention.
Dapp (decentralized application):
An open-source application that runs and stores its data on a blockchain network (instead of a central server) to prevent a single failure point. This software is not controlled by the single body – information comes from people providing other people with data or computing power.
Decentralized:
A system with no fundamental control authority that governs the network. Instead, it is jointly managed by all users to the system.
Desktop wallet:
A wallet that stores the private keys on your computer, which allow the spending and management of your bitcoins.
DILDO:
Long red or green candles. This is a crypto signal that tells you that it is not favorable to trade at the moment. Found on candlestick charts.
Digital Signature:
An encrypted digital code attached to an electronic document to prove that the sender is who they say they are and confirm that a transaction is valid and should be accepted by the network.
Double Spending:
An attack on the blockchain where a malicious user manipulates the network by sending digital money to two different recipients at exactly the same time.
DYOR:
Means do your own research.
Encryption:
Converting data into code to protect it from unauthorized access, so that only the intended recipient(s) can decode it.
Eskrow:
the practice of having a third party act as an intermediary in a transaction. This third party holds the funds on and sends them off when the transaction is completed.
Ethereum:
Ethereum is an open source, public, blockchain-based platform that runs smart contracts and allows you to build dapps on it. Ethereum is fueled by the cryptocurrency Ether.
Exchange:
A platform (centralized or decentralized) for exchanging (trading) different forms of cryptocurrencies. These exchanges allow you to exchange cryptos for local currency. Some popular exchanges are Coinbase, Bittrex, Kraken and more.
Faucet:
A website which gives away free cryptocurrencies.
Fiat money:
Fiat currency is legal tender whose value is backed by the government that issued it, such as the US dollar or UK pound.
Fork:
A split in the blockchain, resulting in two separate branches, an original and a new alternate version of the cryptocurrency. As a single blockchain forks into two, they will both run simultaneously on different parts of the network. For example, Bitcoin Cash is a Bitcoin fork.
FOMO:
Fear of missing out.
Frictionless:
A system is frictionless when there are zero transaction costs or trading retraints.
FUD:
Fear, Uncertainty and Doubt regarding the crypto market.
Gas:
A fee paid to run transactions, dapps and smart contracts on Ethereum.
Halving:
A 50% decrease in block reward after the mining of a pre-specified number of blocks. Every 4 years, the “reward” for successfully mining a block of bitcoin is reduced by half. This is referred to as “Halving”.
Hardware wallet:
Physical wallet devices that can securely store cryptocurrency maximally. Some examples are Ledger Nano S**,** Digital Bitbox and more**.**
Hash:
The process that takes input data of varying sizes, performs an operation on it and converts it into a fixed size output. It cannot be reversed.
Hashing:
The process by which you mine bitcoin or similar cryptocurrency, by trying to solve the mathematical problem within it, using cryptographic hash functions.
HODL:
A Bitcoin enthusiast once accidentally misspelled the word HOLD and it is now part of the bitcoin legend. It can also mean hold on for dear life.
ICO (Initial Coin Offering):
A blockchain-based fundraising mechanism, or a public crowd sale of a new digital coin, used to raise capital from supporters for an early stage crypto venture. Beware of these as there have been quite a few scams in the past.
John mcAfee:
A man who will one day eat his balls on live television for falsely predicting bitcoin going to 100k. He has also become a small meme within the crypto community for his outlandish claims.
JOMO:
Joy of missing out. For those who are so depressed about missing out their sadness becomes joy.
KYC:
Know your customer(alternatively consumer).
Lambo:
This stands for Lamborghini. A small meme within the investing community where the moment someone gets rich they spend their earnings on a lambo. One day we will all have lambos in crypto-valhalla.
Ledger:
Away from Blockchain, it is a book of financial transactions and balances. In the world of crypto, the blockchain functions as a ledger. A digital currency’s ledger records all transactions which took place on a certain block chain network.
Leverage:
Trading with borrowed capital (margin) in order to increase the potential return of an investment.
Liquidity:
The availability of an asset to be bought and sold easily, without affecting its market price.
of the coins.
Margin trading:
The trading of assets or securities bought with borrowed money.
Market cap/MCAP:
A short-term for Market Capitalization. Market Capitalization refers to the market value of a particular cryptocurrency. It is computed by multiplying the Price of an individual unit of coins by the total circulating supply.
Miner:
A computer participating in any cryptocurrency network performing proof of work. This is usually done to receive block rewards.
Mining:
The act of solving a complex math equation to validate a blockchain transaction using computer processing power and specialized hardware.
Mining contract:
A method of investing in bitcoin mining hardware, allowing anyone to rent out a pre-specified amount of hashing power, for an agreed amount of time. The mining service takes care of hardware maintenance, hosting and electricity costs, making it simpler for investors.
Mining rig:
A computer specially designed for mining cryptocurrencies.
Mooning:
A situation the price of a coin rapidly increases in value. Can also be used as: “I hope bitcoin goes to the moon”
Node:
Any computing device that connects to the blockchain network.
Open source:
The practice of sharing the source code for a piece of computer software, allowing it to be distributed and altered by anyone.
OTC:
Over the counter. Trading is done directly between parties.
P2P (Peer to Peer):
A type of network connection where participants interact directly with each other rather than through a centralized third party. The system allows the exchange of resources from A to B, without having to go through a separate server.
Paper wallet:
A form of “cold storage” where the private keys are printed onto a piece of paper and stored offline. Considered as one of the safest crypto wallets, the truth is that it majors in sweeping coins from your wallets.
Pre mining:
The mining of a cryptocurrency by its developers before it is released to the public.
Proof of stake (POS):
A consensus distribution algorithm which essentially rewards you based upon the amount of the coin that you own. In other words, more investment in the coin will leads to more gain when you mine with this protocol In Proof of Stake, the resource held by the “miner” is their stake in the currency.
PROOF OF WORK (POW) :
The competition of computers competing to solve a tough crypto math problem. The first computer that does this is allowed to create new blocks and record information.” The miner is then usually rewarded via transaction fees.
Protocol:
A standardized set of rules for formatting and processing data.
Public key / private key:
A cryptographic code that allows a user to receive cryptocurrencies into an account. The public key is made available to everyone via a publicly accessible directory, and the private key remains confidential to its respective owner. Because the key pair is mathematically related, whatever is encrypted with a public key may only be decrypted by its corresponding private key.
Pump and dump:
Massive buying and selling activity of cryptocurrencies (sometimes organized and to one’s benefit) which essentially result in a phenomenon where the significant surge in the value of coin followed by a huge crash take place in a short time frame.
Recovery phrase:
A set of phrases you are given whereby you can regain or access your wallet should you lose the private key to your wallets — paper, mobile, desktop, and hardware wallet. These phrases are some random 12–24 words. A recovery Phrase can also be called as Recovery seed, Seed Key, Recovery Key, or Seed Phrase.
REKT:
Referring to the word “wrecked”. It defines a situation whereby an investor or trader who has been ruined utterly following the massive losses suffered in crypto industry.
Ripple:
An alternative payment network to Bitcoin based on similar cryptography. The ripple network uses XRP as currency and is capable of sending any asset type.
ROI:
Return on investment.
Safu:
A crypto term for safe popularized by the Bizonnaci YouTube channel after the CEO of Binance tweeted
“Funds are safe."
“the exchage I use got hacked!”“Oh no, are your funds safu?”
“My coins better be safu!”


Sats/Satoshi:
The smallest fraction of a bitcoin is called a “satoshi” or “sat”. It represents one hundred-millionth of a bitcoin and is named after Satoshi Nakamoto.
Satoshi Nakamoto:
This was the pseudonym for the mysterious creator of Bitcoin.
Scalability:
The ability of a cryptocurrency to contain the massive use of its Blockchain.
Sharding:
A scaling solution for the Blockchain. It is generally a method that allows nodes to have partial copies of the complete blockchain in order to increase overall network performance and consensus speeds.
Shitcoin:
Coin with little potential or future prospects.
Shill:
Spreading buzz by heavily promoting a particular coin in the community to create awareness.
Short position:
Selling of a specific cryptocurrency with an expectation that it will drop in value.
Silk road:
The online marketplace where drugs and other illicit items were traded for Bitcoin. This marketplace is using accessed through “TOR”, and VPNs. In October 2013, a Silk Road was shut down in by the FBI.
Smart Contract:
Certain computational benchmarks or barriers that have to be met in turn for money or data to be deposited or even be used to verify things such as land rights.
Software Wallet:
A crypto wallet that exists purely as software files on a computer. Usually, software wallets can be generated for free from a variety of sources.
Solidity:
A contract-oriented coding language for implementing smart contracts on Ethereum. Its syntax is similar to that of JavaScript.
Stable coin:
A cryptocoin with an extremely low volatility that can be used to trade against the overall market.
Staking:
Staking is the process of actively participating in transaction validation (similar to mining) on a proof-of-stake (PoS) blockchain. On these blockchains, anyone with a minimum-required balance of a specific cryptocurrency can validate transactions and earn Staking rewards.
Surge:
When a crypto currency appreciates or goes up in price.
Tank:
The opposite of mooning. When a coin tanks it can also be described as crashing.
Tendies
For traders , the chief prize is “tendies” (chicken tenders, the treat an overgrown man-child receives for being a “Good Boy”) .
Token:
A unit of value that represents a digital asset built on a blockchain system. A token is usually considered as a “coin” of a cryptocurrency, but it really has a wider functionality.
TOR: “The Onion Router” is a free web browser designed to protect users’ anonymity and resist censorship. Tor is usually used surfing the web anonymously and access sites on the “Darkweb”.
Transaction fee:
An amount of money users are charged from their transaction when sending cryptocurrencies.
Volatility:
A measure of fluctuations in the price of a financial instrument over time. High volatility in bitcoin is seen as risky since its shifting value discourages people from spending or accepting it.
Wallet:
A file that stores all your private keys and communicates with the blockchain to perform transactions. It allows you to send and receive bitcoins securely as well as view your balance and transaction history.
Whale:
An investor that holds a tremendous amount of cryptocurrency. Their extraordinary large holdings allow them to control prices and manipulate the market.
Whitepaper:

A comprehensive report or guide made to understand an issue or help decision making. It is also seen as a technical write up that most cryptocurrencies provide to take a deep look into the structure and plan of the cryptocurrency/Blockchain project. Satoshi Nakamoto was the first to release a whitepaper on Bitcoin, titled “Bitcoin: A Peer-to-Peer Electronic Cash System” in late 2008.
And with that I finally complete my odyssey. I sincerely hope that this helped you and if you are new, I welcome you to crypto. If you read all of that I hope it increased, you in knowledge.
my final definition:
Crypto-Family:
A collection of all the HODLers and crypto fanatics. A place where all people alike unite over a love for crypto.
We are all in this together as we pioneer the new world that is crypto currency. I wish you a great day and Happy HODLing.
-u/flacciduck
feel free to comment words or terms that you feel should be included or about any errors I made.
Edit1:some fixes were made and added words.
submitted by flacciduck to CryptoCurrency [link] [comments]

Why i’m bullish on Zilliqa (long read)

Edit: TL;DR added in the comments
 
Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analyzed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk-reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralized and scalable in my opinion.
 
Below I post my analysis of why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise, just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction
 
The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since the end of January 2019 with daily transaction rates growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralized and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. The maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realized early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralized, secure, and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in the amount of nodes. More nodes = higher transaction throughput and increased decentralization. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue dissecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour, no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts, etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as: “A peer-to-peer, append-only datastore that uses consensus to synchronize cryptographically-secure data”.
 
Next, he states that: "blockchains are fundamentally systems for managing valid state transitions”. For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber, and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa, this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network, etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever-changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralized and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimization on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and the University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (66%) double-spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT, etc. Another thing we haven’t looked at yet is the amount of decentralization.
 
Decentralisation
 
Currently, there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so-called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralized nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics, you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching its transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end-users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public. They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public-facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers. The 5% block rewards with an annual yield of 10.03% translate to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non-custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS; shard nodes and seed nodes becoming more decentralized too, Zilliqa qualifies for the label of decentralized in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. The faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time-stamped so you’ll start right away with a platform introduction, roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalized: programming languages can be divided into being ‘object-oriented’ or ‘functional’. Here is an ELI5 given by software development academy: * “all programs have two basic components, data – what the program knows – and behavior – what the program can do with that data. So object-oriented programming states that combining data and related behaviors in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behavior are different things and should be separated to ensure their clarity.” *
 
Scilla is on the functional side and shares similarities with OCaml: OCaml is a general-purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognized by academics and won a so-called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise, it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts, it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa or Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue: In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships
 
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organizations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggests that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already take advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, Airbnb, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are built on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human-readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They don't just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data, it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community-run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non-custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiative (correct me if I’m wrong though). This suggests in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real-time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding of what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures, Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

Why i’m bullish on Zilliqa (long read)

Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analysed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralised and scalable in my opinion.
 
Below I post my analysis why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since end of January 2019 with daily transaction rate growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralised and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. Maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realised early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralised, secure and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in amount of nodes. More nodes = higher transaction throughput and increased decentralisation. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue disecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as:
“A peer-to-peer, append-only datastore that uses consensus to synchronise cryptographically-secure data”.
 
Next he states that: >“blockchains are fundamentally systems for managing valid state transitions”.* For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralised and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimisation on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (>66%) double spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT etc. Another thing we haven’t looked at yet is the amount of decentralisation.
 
Decentralisation
 
Currently there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralised nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching their transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public.They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers.The 5% block rewards with an annual yield of 10.03% translates to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS & shard nodes and seed nodes becoming more decentralised too, Zilliqa qualifies for the label of decentralised in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. Faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time stamped so you’ll start right away with a platform introduction, R&D roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalised: programming languages can be divided into being ‘object oriented’ or ‘functional’. Here is an ELI5 given by software development academy: > “all programmes have two basic components, data – what the programme knows – and behaviour – what the programme can do with that data. So object-oriented programming states that combining data and related behaviours in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behaviour are different things and should be separated to ensure their clarity.”
 
Scilla is on the functional side and shares similarities with OCaml: > OCaml is a general purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognised by academics and won a so called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities safety is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa for Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue:
In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships  
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organisations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggest that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already taking advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, AirBnB, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are build on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”*
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They dont just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities) also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiatives (correct me if I’m wrong though). This suggest in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures & Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

AMA Recap of CEO and Co-founder of Chromia, Henrik Hjelte in the @binancenigeria Telegram group on 03/05/2020.

Moh (Binance Angel)🇳🇬,
Please join me to welcome, “CHROMIA CEO & Co-founder, Henrik Hjelte” and “ CMO, Serge lubkin”
Oh, before we proceed, kindly introduce yourselves and tell us a bit about your roles at Chromia u/sergelubkin & u/henrik_hjelte.
Henrik Hjelte,
Ok, I’m Henrik, I’m CEO of ChromaWay that crated the Chromia project. My background is a bit mixed: developer for 30+ years (since 80: s), but I studied other things at university (economics, politics, social sciences philosophy). Life is more than computer you know… I worked with FInance/IT then started a web startup and got to know Alex Mizrahi who worked as a developer….
Web startup didn’t fly, but Alex showed me bitcoin. When I finally read the whitepaper I was blown away, and joined Alex colored-coins project, the first open source protocol to issue tokens. in 2013.
So, we started with open-source tokens (that kickstarted the blockchain industry. Then started company together 2014.
That is a long intro, I’ll shut up now… Thanks….
Serge,
I’m Serge, I’m assisting Henrik today and I work with Chromia marketing team as well as on some business development projects
Moh (Binance Angel)🇳🇬, , Question No 1 :
Kindly describe the CHROMIA project and what it aims to achieve?
Henrik Hjelte,
Chromia is a new public blockchain based on the idea of integrating traditional databases, Relational databases with blockchain security. Chromia is a general purpose blockchain with full smart contract capabilities, just that it is a lot easier to code, even complex applications. You code with an easy to learn new programming language that combines the power of SQL and normal languages but makes it secure in a blockchain context. Up to 1/10 the code-lines vs other blockchains. There is a blog post about it, I’ll share later. On lines of code.
The aim of Chromia is to combine relational databases, which exist in every kind of organization, together using blockchains. We want to provide a platform for our users to develop totally decentralized apps securely. Our goal is for Chromia to be seen as the number one infrastructure for decentralized applications.
https://blog.chromia.com/reasons-for-rell-compactness/
Moh (Binance Angel)🇳🇬,Question No 2:
What inspired the CHROMIA Core team to pick interest in CHROMIA project? what breakthrough have you achieved so far? what are the present challenges you’re facing and how are you planning to overcome them?
Henrik Hjelte,
We started with public blockchains, tokens in 2012, the world’s first stable coin with a bank 2015 (LHV). When coding that solution, peer to peer payments of Euro-tokens, we discovered we need performance reasons to store all data in a database. We needed to quickly know the “balance” of a user, and can’t loop through a blockchain. And slowly the idea grew that we can make the database INTO a blockchain, integrate completely with the transaction mechanism of a database. So, we did it as a private blockchain first (Postchain), used it for some projects, then came up with the idea to make a Public Blockchain based on it.
The motivation is that we felt we needed a better programming model for blockchains. Our CTO Alex has always been thinking of optimal solutions for blockchain technology and has lots of experiences thinking about it. Also: make real-world useful things. For example, we support free-to-play models since users do not need to own “our” token to USE apps, the application itself (often the developer) pays for hosting. And of course, great performance. Also: more knowledge of who runs nodes and risk level. So, it is more suitable for enterprises.
In Chromia the application (at the start the developer) decides Who should be allowed to run its own blockchain (every dapp has its own blockchain). You can also say on a higher level that we want to provide technology to create “Public applications”, a tool
that enables us to create a fairer world.
https://blog.chromia.com/towards-publicly-hosted-applications/
Moh (Binance Angel)🇳🇬, Question No 3 :
Why did you create your own blockchain instead of leveraging on existing and proven base layer protocol?
Henrik Hjelte,
None of the existing protocols are suitable to support large-scale, mainstream applications. We designed Chromia to give our users exactly what they want; fast support, useful features, with an affordable service cost. Other platforms do not have the ability to host data applications in a decentralized and secure way, as Chromia can. Chromia also has its own bespoke programming language that sets it apart from SQL-based platforms. It’s so easy to use, even non-developers can understand it!
The other big difference with Chromia concerns payments. Chromia gives its users freedom from having to pay for each transaction. With Chromia, you have the flexibility to decide how to set fees for your dapp
And when it comes to “proven base layer protocols”: they are just a few years at max. Chromia is built on top of Postgresql, that has been used in enterprises for decades, a really proven technology. And the Java virtual machine on top of that. This is proven tech, at core.
Moh (Binance Angel)🇳🇬, Question No 4 :
What is Postchain?
Henrik Hjelte,
Postchain is an open-source product of ChromaWay for enterprise clients and it’s the core technology on which Chromia is built.
Postchain is a replicated blockchain and database that offers highly resilient distributed database management with distributed control.
Postchain is the only product on the market that combines the immutable consensus of a blockchain and the properties of a real database management system (You know, the tech that built SAP, Facebook, Banks…) …
Postchain allows you to share information between companies and/or individuals in a secure and transparent way.
That is the low-level base of Chromia you can say
Moh (Binance Angel)🇳🇬,
Can you please name some of your clients that are using this service already?
Serge,
You mean products built on Postchain? Also, Stockholm Green Digital Finance, Green Assets Wallet that’s now functioning on Chromia Bootstrap Mainnet.
Big financial institutions
It’s only a beginning of course, but very promising one. https://greenassetswallet.org/news/2019/12/12/launch-of-the-green-assets-wallet
Henrik Hjelte,
We got a lot of attention with the Swedish Land registry; we did a joint project between them and banks and a telco etc on postchain as base.
Then, right now we do a large project with the Inter-American Development bank also about land-registration (processes) in South America.
We had a client, Stockholm Green Digital Finance, that did a system for green bonds (tracking environmental impact. Yes, as Sege says, it was later moved to Chromia…
Which is cool. Also, another external development company did that phase of the project, proving that other can build on our tech,4irelabs from Ukraine is their name. Some companies using the GAW: Blackrock. SEB Bank etc…
Also, we have done more projects, in Australia, asia etc. Oh Daimler too (the Mercedes company) …
Moh (Binance Angel)🇳🇬,
Lots of enterprise clients you’ve got. No wonder I do see the meme “CHR=ETH KILLER”
Serge,
It’s a meme from our supporters. But we believe we can coexist:)
For some niche things eth is good :)
So, no killing :D
Henrik Hjelte,
We want to work with partners too for this, we can’t do all projects ourselves. Also, for Chromia projects, ChromaWay company can help do support maintenance etc. So, it is not competing, it adds value to the ecosystem.
Yeah ETH is good too, for some applications. We are friends with them from colored-coin times.
And colored-coins inspired ETH, and ETH inspires us.
Moh (Binance Angel)🇳🇬, Question No 5 :
Lastly, CHROMIA is already doing very well in terms of business. You just got listed on BINANCE JEX, you are on-boarding new clients and dishing out new features. But what’s next? Is there anything to be excited about?
Henrik Hjelte,
Plans for 2020 are to both release a series of dapps to showcase how fantastic Chromia is, as well as continue to develop the platform. And when it is secure and good enough, we will release the mainnet.
Dapps are now being made by us as well as others. We do a decentralized social network framework called Chromunity, now released to TestNet. It is really cool, users can vote over moderators, and in the future users might even govern the complete application, how it can be updated. This is a great showcase for Chromia and why we use the slogan Power to the Public.
https://testnet.chromunity.com/
Games coming are:
Mines of Dalarnia (by Workinman Interactive). An action game in a mine with blockchain rental of plots and stuff. Already on TestNet and you can take a peek on it at https://www.minesofdalarnia.com
more coming…
Krystopia 2, novas journey. A puzzle game done by Antler Interactive. Could only find trailer though: https://www.youtube.com/watch?v=-G95-Dw3kI4
However, we have even larger ambitions with blockchain gaming…
We are doing A secret demo-project that we do together with Antler to showcase the technical potential of Chromia platform.
Another exciting relase is an indie game Chain of Alliance, done by two external developers. It is a strategy game with full-logic on blockchain. Public release on TestNet on May 22!
More coming in 2020: Other dapps from other companies, one in impact-tech.
That is a serious app, Chromia also works outside gaming and social media for enterprises and startups
And I hope some of you will do something, we want to support dapps on the platform so reach out to us…
Moh (Binance Angel)🇳🇬,
When can we be expecting the mainnet? Any approximate time? I’m sure the community will really excited to have that info
Serge,
It’s now in Bootstap phase, so it’s technically already functioning. MVP will be very soon
Stay tuned;)
Twitter questions Vs answers
Ellkayy,
What’s the unique thing in Chromia that no other blockchain has, that makes you the better option?
Henrik Hjelte,
Unique: Chromia is the only blockchain that also has a real, proper database built-in. And blockchain is about managing data in a shared context. How to best managed data was solved in computer science already. So far, it is the relational algebra model that is used in 100% of all enterprises, and has an 85% market share. Chromia is the only blockchain that use that model and that power.
Ellkayy,
Why Chromia use RELL and not SQL or JavaScript? Can developers with other language knowledge use Chromia?
Serge,
Rell is the only language on the blockchain side. You can combine with anything on client-side, although now client only exists for JS/TS, C# and Java/Kotlin. Rell is a language for relational blockchain programming. It combines the following features:
1 Relational data modeling and queries similar to SQL. People familiar with SQL should feel at home once they learn the new syntax.
2 Normal programming constructs: variables, loops, functions, collections, etc.
3 Constructs which specifically target application backends and, in particular, blockchain-style programming including request routing, authorization, etc.
Rell aims to make programming as convenient and simple as possible. It minimizes boilerplate and repetition. At the same time, as a static type system it can detect and prevent many kinds of defects prior to run-time.
Roshan DV,
I have been monitoring your project for a while but some concerns about it: Your project will build your own core network, so you have more visibility than Ethereum and NEO. These are projects that were born before and which also have a very large community. And what can assure you that your project will guarantee the functionalities that you have defined?
Henrik Hjelte,
What came first? I want to remind that Vitalik was in the colored-coins project, led by our CTO and we had blockchain in production before ETH and NEO etc existed. We are the old dogs…
Large community: We are part of the same community. When developers are fustrated and want to try new tech, they go to us from other blockchains.
Also, we have a large potential: SQL (close to Rell and our tech) is the world top 3 language. Bigger than Java. Bigger than PHP. Only beaten bny HTML and javascript. Soliditiy is not on top 20 list. THere are millions of developers that know SQL. That is potential for community… (source is Stackoverflow annual programming survey).
Paul (Via Manage),
What are the utilities of Chromia and what purpose does the Chromia coin serve?
Serge,
Chromia meta-token called Chroma (CHR). It is used in Chromia to compensate block-producing nodes by fees. In Chromia, fees are paid by dapps, which can in their turn collect fees from users. Chromia provides mechanisms which balance the interests of developers and users. Dapp tokens can be automatically backed with Chroma, providing liquidity and value which is independent of investment into the dapp. Dapp investors can be compensated in Chroma through a profit-sharing contract. For developers, Chromia offers the opportunity to derive income from dapps. This incentivises the creation and maintenance of high quality dapps because better dapps generate more income and create more demand for tokens owned by the developer. The Chromia model is designed to support sustainable circular economies and foster a mutually beneficial relationship between developers, users, and investors.
Idemudia Isaac,
Thank you very much u/henrik_hjelte u/sergelubkin
You stated your plans for 2020 is to release series of dApps. What kind of large scale, mainstream decentralized application and $Chromia products do you think is suitable for the Nigerian environment?
Henrik Hjelte,
Actually, this is why we want to work with partners. We cannot know everything, For African market we have seen of course payments/remittances (but it has fallen out of trend). We would love to do real-estate /land-registration but we understand we need a strong local partner (more than a single person, a real company or organization driving).
●CC● | Elrond 🇵🇭,
What plans do you have to building a vibrant global community around Rell? And how would you go about encouraging/incentivising such ‘Rellists’ around the world to build dApps on Chromia? u/henrik_hjelte u/sergelubkin
Henrik Hjelte,
For developers (I am one too, or used to be) you normally need to prove a few things:
\ That the tech is productive (can I do apps faster?)*
\ That it is better (less bugs, more maintainable?)*
Then the community will come. We see that all the time. Look at web development. React.js came, and developers flooded to it. Not because of marketing on Superbowl, but because it was BETTER. Fewer bugs and easier to do complex webapps.
So, at core: people will come when we showcase the productivity gains, and that is what we need to focus on.
●CC● | Elrond 🇵🇭,
Why do you choose to build Chromia token on ERC20 instead of other blockchain such as BEP2, TRC20…or your own chain while ERC20 platform is very slow and have a case of fee? u/henrik_hjelte u/sergelubkin
Serge,
So far Ethereum has the best infrastructure, it’s the oldest and most reliable network for tokens. It also became the industry standard which exchanges utilize. We will transfer 80% of all erc20 tokens to our Chromia blockchain when it’s ready for that.
Koh,
In your whitepaper it says in the upcoming version of ChromiaWallet that it will be able to function as a Dapp browser for public use. Q) Will it be similar to the Dapp browser on Trust Wallet?
Serge,
It’s live already try it http://vault-testnet.chromia.com/
It’s the wallet and a dapp browser
CHROMIA is SOLID,
Your metamorphosis is a laudable one,surviving different FUD, how have you been able to survive this longest bear market and continue building and developing cos many projects have died out in this time period!
Henrik Hjelte,
You need to know we started a company before ETH existed. There was 0 money in blockchain when we started. I did it becuase it was fun, exciting tech and MAYBE someone would be interested in the thing we made “Tokens”…
We were never in the crazy bull-market, manly observed the crazies from the side. We fundraised for CHR in a dip (they called it bear market). ChromaWay the company also make money from enterprises.
Алекс,
What is SSO?
What makes it important for chromias ecosystem?
Why should we users be attracted to it?’
Serge,
Chromia SSO is perhaps the most important UX improvement that Chromia offers the decentralized world. It revolutionizes the way users interact with dapps. Any dapp requires users to sign transactions, that means they need a private key. Control of the private key is control of any and all dapps or assets associated with it. This means that private keys have an especially stringent set of security requirements in a blockchain context — they control real value, and there is no recourse if they are compromised or lost. https://blog.chromia.com/chromia-sso-the-whys-and-the-whats/
Olufemi Joel,
How do you see the Chromia project developing in 3 to 5 years, both on the commercial level and on the evolution of the company? What are the plans for expansion in different regions? Are you going to outsource the team/skills or keep it centralized and set up offices?
Henrik Hjelte,
I take part of the question. On outsource: we were a distributed team from day one, with co-founders from 3 countries (still living there). We are distributed now, Ukraine, Sweden, Vietnam, Croatia, China are “hubs” then we have individuals too. No big plan, just where we found great developers…
Park Lee, u/henrik_hjelte
You claim CHOROMIA have fast support, useful features with an affordable service cost. That fast and the fees are cheap but can you guarantee stability?
What’s the Algorithms which are used by CHROMIA for that fast? And Can you explain it?
Serge,
We use PBFT protocol with some features of DPOS, this plus sidechains parallelism offers almost unlimited speed and scalability. We also use the feature called anchoring to secure all transactions in batches on Bitcoin blockchain.
Mario Boy,
What are you guys trying to achieve as an end goal? The next Ethereum? Or the next enterprise version of Ethereum? Or something different?
Henrik Hjelte,
The end goal… good question. When we started in 2014 there were no other blockchain companies, so we wanted to do the best blockchain technology in order to enable a decentralized world with more fair applications. And that is what we still do. Technology/software that can enable people to make a fairer world
Erven James Sato,
“STAKING” is one of the STRATEGIES to ATTRACT USERS and ACHIEVE MASS ADOPTION
Does your GREAT PROJECT have plan about Staking?
Serge,
Yes, we announced our staking plans couple of months ago https://blog.chromia.com/on-providers-and-stakes/
We are working with our current partners to make it accessible for general public.
Chizoba,
I often see Chromia and ChromaWay being used interchangeably, what is the relationship between the two?
Henrik Hjelte,
ChromaWay the company started Chromia from code done as postchain. This is normal in open-source development, a company that leads development. But Chromia will be a decentalized network, so ChromaWay will not make direct money out of it more than if we have a role as a Provider (and get payed for hosting). ChromaWay can indirectly make money from optional support and maintenance etc. Also, this, perfectly normal in open-source world.
And it also benefits Chromia that there is a market for support.
A market open for competition.
No special treatment for “ChromaWay”
Enajite,
How to start coding on Chromia?
Henrik Hjelte,
Go to https://rell.chromia.com and follow the tutorial. Enjoy the free time you get compared to other blockchain languages…
●CC● | Elrond 🇵🇭,
Chromia process 500 TPS, these is slow compare to other Blockchains, where we can see now 60K TPS if more capacity require, how can that be? u/henrik_hjelte u/sergelubkin
Serge,
Yes, if you need faster speed you can use parallelism by having multiple blockchains for your dapp. Also, by optimization and better architecture sky is the limit.
Delphino.eth ⟠,
Can we consider Chromia an hybrid? For its mixing of Blockchain and a Database?
Henrik Hjelte,
Yes and no. I want to stress that Chromia is a FULL blockchain. It is not only “inspired”. It is a blockchain AND a database.
I tend to think about Hybrid more in the usecases that you might have as a customer. For example, a bank might want to have some data/transactions private (as a private blockchain) and have another half of the application with public data (on Chromia). So that is a hybrid solution, and Chromia ROCKS in that segment since it is the only blockchain that is complete relational database (what the normal world uses anyway for 85% of all applications)
Example area: “open banking”
Steve bush,
How will Chromia I have any empower Investors, Companies, Developers, Platform Users to
deliver impactful solutions and bring value to people all over the world?
Henrik Hjelte,
In order to make blockchain go big, we need to have users. Users need to be able to use apps with ease. Chromia have features like single-sign on (ease of use), but importantly do not require owning tokens to USE apps.
Also, it needs to be easy to make applications. For example, if you are a student in US and came up with an idea, you want to make an application for your school. Let’s call it “thefacebook”. You code something in PHP and MySQL. DID YOU SEE THAT. SQL. SQL.SQL. It is the same tech that Chromia has but no one else in the blockchain business. SQL rules the world if you look outside the crypto bubble. Google the Oracle head-office… 100% of all enterprises use it… Because it is easy and powerful.
And we even improve on SQL with Rell….
So, compare that with a hacky virtual machine that have a few years…. 😊
August,
“Mines of Dalarnia” is a game that has caught my attention a lot, due to its simplicity and quality. But in the time that I have used it I have not been able to differentiate between the Chromia blockchain of this game and that of the competition? What other games do you have next to develop? I would like to give ideas in those games like a Gamers!
Henrik Hjelte,
We thought about in corona time sports club might want to engage more with their fans digitally. And of course, E-Sports is getting a real momentum as the young generation grows up. Now a bit sad that all games are centralized. My daughter will be sad when (at some day?) they will close down roblox… it happens to all centralized apps eventually… that is what we fix. Power to the Public to control apps and their future. I’ll repost again Alex post. Sorry I like it a lot… https://blog.chromia.com/towards-publicly-hosted-applications/
Bisolar,
Good day Chromia team from a Chromia fan
Can you tell us Chromia’s geographical focus at the moment and the proces it follows for it BUSINESS DEVELOPMENT?
What factors do you consider before identifying NEW MARKETS to enter?
Serge,
Chromia will initially focus on community building in China, Korea, US and Europe. The focus of community growth will gradually expand to other markets as the project gains popularity.
Current community growth strategies of Chromia include:
Chromia blockchain incubator creation to welcome more projects to the Chromia blockchain
Host blockchain gaming conferences, workshops, and meetups to engage with potential users.
Provide online and face-to-face tutorials to engage with dapps developers.
Attract blockchain developers through direct and indirect approach via specialized platforms and communities.
Develop our relations with existing and previous corporate clients, and their partnership networks to participate in their blockchain ventures
Launch Node program to encourage system providers to run nodes on the Chromia blockchain.
Staking program for Chroma (CHR) tokens
Active community engagement via social channels.
Future community growth strategies of Chromia after Mainnet launch include:
Partner with more gaming studios, startups and enterprises
Build local communities with Ambassador Programs.
Partner with external incubator and accelerators to provide blockchain expertise and introduce projects to Chromia ecosystem
Continue organizing hackathons around the world to attract more developers.
Emmanuel,
I want to know the current structure of your roadmap? What is the future roadmap of CHROMIA? Is there any key milestone coming???
Henrik Hjelte,
It is easy to do a roadmap; anyone can make a pape plan. But I think they are used in the wrong way. Software is hard, blockchain is even harder because it NEEDS TO BE SECURE. No MVP releases. We cannot even have roadmap deadlines and skimp on quality. Where we are now though is: Rell language finished so much that developers can write apps and see its magic. We have external devs doing dapps. We have the first phase of mainnet. We have a series of releases coming up. We will release mainnet when it is secure enough, and gradual roll out. I think quite soon, development is going great at the moment, a bit quicker than we though.
Ellkayy,
Why doesn’t Chromia transactions use gas? How do you power transactions then?
Serge,
Main feature of gas in Ethereum is to pay for transactions for miners get rewards. In our scenario Providers get rewards from dapp owners. So dapp owner pays for storing their dapp. It’s like Amazon Web Service model. Then dapp owner can monetize it in its own way.
Ellkayy,
Many developers don’t know RELL, just Solidity and SQL. Is this a barrier or threat to Chromia? Why RELL is better?
Henrik Hjelte,
Very few developers know Solidity. Do a search on github. I referred previously to stackoverflow programming language survey results. https://insights.stackoverflow.com/survey/2019#technology
If you know SQL, you learn Rell in a day.
SQL is the top 3 language here. I’d say there are millions that can easily jump to Rell.
Soldity or other blockchains, not on top 20 list even.
Rell is a hipper, nicer version of SQL that is also a “normal” programming language.
Developers like to learn new things, new languages. Otherwise we would be stuck with PHP, the DOMINANT language. Well, is it still? Seems javascript and react.js and node etc is taking over…
Moh (Binance Angel)🇳🇬,
This brings us to the end of the AMA. It’s been a pleasure being with all of you, THANK YOU. Special shout out to u/sergelubkin and u/henrik_hjelte for honouring us with their presence today❤️
Kindly follow CHROMIA on twitter and join the conversation with their community on Telegram
Twitter: https://twitter.com/Chromia
Telegram: https://t.me/hellochromia
Official Chromia Nigeria Community Channel 🇳🇬 : https://t.me/ChromiaNigeria
Website: www.chromia.com
submitted by dam30 to Teamchromia [link] [comments]

A guide to Smart Contracts

A guide to Smart Contracts

https://preview.redd.it/ysi74g2vn3251.png?width=1920&format=png&auto=webp&s=63875e316556c41144ad81cf061caf5bb3f4680d
We all have heard the term Smart Contract. When Satoshi invented Blockchain, it was meant to perform transactions only. Ethereum smart contracts made it the prime choice to build Dapps over it. Smart contract enhanced Ethereum’s functionality and makes it different from the traditional blockchain (Bitcoin). This functionality was replicated by other newer Blockchains.
What are Smart Contracts?
Smart contracts can be defined as self-executing applications that run on a blockchain. It is an agreement between two or more parties in the form of a computer code that runs on a decentralized network in a blockchain. It consists of a set of defined rules which are agreed upon by the involved parties. The contract automatically gets activated whenever certain conditions are met.
This idea will remove the involvement of any trusted third-party companies (such as banks) and will be controlled by computers on a trusted network.
Ethereum is one of the most popular blockchain platforms for creating smart contracts. It supports a feature called Turing-completeness that enables the developers to build customized smart contracts. Solidity, Ethereum’s original coding language is used to develop smart contracts. Ethereum blockchain's ERC-20 and ERC-721 tokens are smart contract standards.
Who created it?
Nick Szabo, a computer scientist, and cryptographer, first described the idea of Smart contracts in the ‘90s. He worked on the concept of defining contract laws in businesses between parties by maintaining an electronic commerce protocol on the Internet.
He further designed Bit Gold, a mechanism for a decentralized digital currency in 1998. Though the idea was never implemented it created a base that led to the popularity of Bitcoin after 10 years.
Properties:
· Self-verifiable
· Self-executable
· Tamper Proof
Benefits of using Smart Contract
· The removal of third-party or middleman leads to direct and transparent communication between involving parties
· Helps in maintaining trust as the agreement rules were predefined and agreed by the parties involved
· Helps in reducing error and frauds
· Time and cost-efficient
· No single point of failure or data loss as data is distributed across the network

https://preview.redd.it/1e5ahcqxn3251.png?width=1024&format=png&auto=webp&s=f8a1ebb9b3a84dd721fb32f96fc1950899bc3015
Different objects of Smart contracts
There are three essential and main objects of Smart Contracts
· Signatories- The parties who use the smart contract.
· Agreement subject
· Terms and Condition-. Details like rules, obligations, and associated punishments, etc are mentioned as terms and conditions as appropriate.
How Smart Contract works
Ethereum has 2 types of accounts
· External accounts (user account) - Controlled by public-private key pairs
· Contract accounts - Controlled by the code stored together with the account
These accounts contain four fields:
· The nonce, which ensures that each transaction can only be processed once
· The current ether balance of the account
· The contract code of the account
· The storage of the account
Model steps
  1. External account executes a function:
a. The user initiates the process by signing the transaction using his private key corresponding to the account.
b. Local validation of the transaction happens. It is broadcasted to the network.
c. The transaction is added to the transaction pool. The mines maintains such pools.
  1. Generate EVM bytecode through compiling
  2. EVM
a. EVM is a powerful, virtual sandbox embedded within each full Ethereum node
b. The job of the EVM is to update the Ethereum state by computing valid state transitions as a result of smart contact code execution
c. The EVM should not run into any exceptions during the execution
  1. Get contract address from that transaction's receipt
  2. Trigger contract address to invoke methods of that deployed smart contract
  3. Upon receiving a newly created block, the local node executes all the transactions in the block.
The accuracy and quality of a smart contract depends on the following things
· Open and decentralized database
· The environment needs to support the use of public-key cryptography
· Quality programming is crucial.
· Data should be reliable.
· Robust rules should be used while automating the process.
Features
Smart contracts automatically support the features of underlying blockchain technology.
· Autonomy – Complete control of the involving parties. No need of middleman as in the case of traditional contractual system
· Speed – Automated computer code runs as soon as the input criteria fulfill, thereby eliminating the delays caused by manual paperwork activity
· Safety – Network encryption guarantees safety against data theft or hacking
· Savings – No doubt that the removal of middleman saves a lot of overall cost and time
· Accuracy – Since these smart contracts are automated software codes so they ensure accurate output as long as the data fed into the system as input is accurate
· Trust – Helps in building trust as the documents are encrypted in a shared ledger
· Backup – Since in Blockchain network, each node has a complete backup of data which ensures protection over data loss
Potential Use cases
Smart contracts can be used to exchange money, property, shares, or anything without any intervention of middleman. They are now gaining popularity and adaption in various sectors. Some of the main sectors are as follows:-
· Insurance Companies
· Health Systems
· Government’s administrative work.
· Business Management
I will cover each of the potential use cases in detail in my future articles separately.
Conclusion
Smart Contract is the greatest innovation built on Blockchain technology. We can say it as a cherry over the pie. It has given a new dimension to technology and is one of the biggest reasons behind the popularity of Ethereum.
We can say without any second thought that very soon we will be entering into the era where there will be no intervention of any third party. In this way, it can help us in saving a lot of money, time, and effort. Also, we don’t need to be dependent or trust anyone while taking any crucial transactions. This will surely help in reducing fraud, unnecessary delays, and the overall cost of transactions. Smart Contracts will make many transactional jobs redundant. We can be hopeful that further development in technology will open sources for many other new jobs.
Read More: Understanding Hard Fork
Register in Crypto.com and get $ 50. Link here.
Create a Binance account using my referral link.
submitted by RumaDas to BlockChain_info [link] [comments]

Technical: A Brief History of Payment Channels: from Satoshi to Lightning Network

Who cares about political tweets from some random country's president when payment channels are a much more interesting and are actually capable of carrying value?
So let's have a short history of various payment channel techs!

Generation 0: Satoshi's Broken nSequence Channels

Because Satoshi's Vision included payment channels, except his implementation sucked so hard we had to go fix it and added RBF as a by-product.
Originally, the plan for nSequence was that mempools would replace any transaction spending certain inputs with another transaction spending the same inputs, but only if the nSequence field of the replacement was larger.
Since 0xFFFFFFFF was the highest value that nSequence could get, this would mark a transaction as "final" and not replaceable on the mempool anymore.
In fact, this "nSequence channel" I will describe is the reason why we have this weird rule about nLockTime and nSequence. nLockTime actually only works if nSequence is not 0xFFFFFFFF i.e. final. If nSequence is 0xFFFFFFFF then nLockTime is ignored, because this if the "final" version of the transaction.
So what you'd do would be something like this:
  1. You go to a bar and promise the bartender to pay by the time the bar closes. Because this is the Bitcoin universe, time is measured in blockheight, so the closing time of the bar is indicated as some future blockheight.
  2. For your first drink, you'd make a transaction paying to the bartender for that drink, paying from some coins you have. The transaction has an nLockTime equal to the closing time of the bar, and a starting nSequence of 0. You hand over the transaction and the bartender hands you your drink.
  3. For your succeeding drink, you'd remake the same transaction, adding the payment for that drink to the transaction output that goes to the bartender (so that output keeps getting larger, by the amount of payment), and having an nSequence that is one higher than the previous one.
  4. Eventually you have to stop drinking. It comes down to one of two possibilities:
    • You drink until the bar closes. Since it is now the nLockTime indicated in the transaction, the bartender is able to broadcast the latest transaction and tells the bouncers to kick you out of the bar.
    • You wisely consider the state of your liver. So you re-sign the last transaction with a "final" nSequence of 0xFFFFFFFF i.e. the maximum possible value it can have. This allows the bartender to get his or her funds immediately (nLockTime is ignored if nSequence is 0xFFFFFFFF), so he or she tells the bouncers to let you out of the bar.
Now that of course is a payment channel. Individual payments (purchases of alcohol, so I guess buying coffee is not in scope for payment channels). Closing is done by creating a "final" transaction that is the sum of the individual payments. Sure there's no routing and channels are unidirectional and channels have a maximum lifetime but give Satoshi a break, he was also busy inventing Bitcoin at the time.
Now if you noticed I called this kind of payment channel "broken". This is because the mempool rules are not consensus rules, and cannot be validated (nothing about the mempool can be validated onchain: I sigh every time somebody proposes "let's make block size dependent on mempool size", mempool state cannot be validated by onchain data). Fullnodes can't see all of the transactions you signed, and then validate that the final one with the maximum nSequence is the one that actually is used onchain. So you can do the below:
  1. Become friends with Jihan Wu, because he owns >51% of the mining hashrate (he totally reorged Bitcoin to reverse the Binance hack right?).
  2. Slip Jihan Wu some of the more interesting drinks you're ordering as an incentive to cooperate with you. So say you end up ordering 100 drinks, you split it with Jihan Wu and give him 50 of the drinks.
  3. When the bar closes, Jihan Wu quickly calls his mining rig and tells them to mine the version of your transaction with nSequence 0. You know, that first one where you pay for only one drink.
  4. Because fullnodes cannot validate nSequence, they'll accept even the nSequence=0 version and confirm it, immutably adding you paying for a single alcoholic drink to the blockchain.
  5. The bartender, pissed at being cheated, takes out a shotgun from under the bar and shoots at you and Jihan Wu.
  6. Jihan Wu uses his mystical chi powers (actually the combined exhaust from all of his mining rigs) to slow down the shotgun pellets, making them hit you as softly as petals drifting in the wind.
  7. The bartender mutters some words, clothes ripping apart as he or she (hard to believe it could be a she but hey) turns into a bear, ready to maul you for cheating him or her of the payment for all the 100 drinks you ordered from him or her.
  8. Steely-eyed, you stand in front of the bartender-turned-bear, daring him to touch you. You've watched Revenant, you know Leonardo di Caprio could survive a bear mauling, and if some posh actor can survive that, you know you can too. You make a pose. "Drunken troll logic attack!"
  9. I think I got sidetracked here.
Lessons learned?

Spilman Channels

Incentive-compatible time-limited unidirectional channel; or, Satoshi's Vision, Fixed (if transaction malleability hadn't been a problem, that is).
Now, we know the bartender will turn into a bear and maul you if you try to cheat the payment channel, and now that we've revealed you're good friends with Jihan Wu, the bartender will no longer accept a payment channel scheme that lets one you cooperate with a miner to cheat the bartender.
Fortunately, Jeremy Spilman proposed a better way that would not let you cheat the bartender.
First, you and the bartender perform this ritual:
  1. You get some funds and create a transaction that pays to a 2-of-2 multisig between you and the bartender. You don't broadcast this yet: you just sign it and get its txid.
  2. You create another transaction that spends the above transaction. This transaction (the "backoff") has an nLockTime equal to the closing time of the bar, plus one block. You sign it and give this backoff transaction (but not the above transaction) to the bartender.
  3. The bartender signs the backoff and gives it back to you. It is now valid since it's spending a 2-of-2 of you and the bartender, and both of you have signed the backoff transaction.
  4. Now you broadcast the first transaction onchain. You and the bartender wait for it to be deeply confirmed, then you can start ordering.
The above is probably vaguely familiar to LN users. It's the funding process of payment channels! The first transaction, the one that pays to a 2-of-2 multisig, is the funding transaction that backs the payment channel funds.
So now you start ordering in this way:
  1. For your first drink, you create a transaction spending the funding transaction output and sending the price of the drink to the bartender, with the rest returning to you.
  2. You sign the transaction and pass it to the bartender, who serves your first drink.
  3. For your succeeding drinks, you recreate the same transaction, adding the price of the new drink to the sum that goes to the bartender and reducing the money returned to you. You sign the transaction and give it to the bartender, who serves you your next drink.
  4. At the end:
    • If the bar closing time is reached, the bartender signs the latest transaction, completing the needed 2-of-2 signatures and broadcasting this to the Bitcoin network. Since the backoff transaction is the closing time + 1, it can't get used at closing time.
    • If you decide you want to leave early because your liver is crying, you just tell the bartender to go ahead and close the channel (which the bartender can do at any time by just signing and broadcasting the latest transaction: the bartender won't do that because he or she is hoping you'll stay and drink more).
    • If you ended up just hanging around the bar and never ordering, then at closing time + 1 you broadcast the backoff transaction and get your funds back in full.
Now, even if you pass 50 drinks to Jihan Wu, you can't give him the first transaction (the one which pays for only one drink) and ask him to mine it: it's spending a 2-of-2 and the copy you have only contains your own signature. You need the bartender's signature to make it valid, but he or she sure as hell isn't going to cooperate in something that would lose him or her money, so a signature from the bartender validating old state where he or she gets paid less isn't going to happen.
So, problem solved, right? Right? Okay, let's try it. So you get your funds, put them in a funding tx, get the backoff tx, confirm the funding tx...
Once the funding transaction confirms deeply, the bartender laughs uproariously. He or she summons the bouncers, who surround you menacingly.
"I'm refusing service to you," the bartender says.
"Fine," you say. "I was leaving anyway;" You smirk. "I'll get back my money with the backoff transaction, and posting about your poor service on reddit so you get negative karma, so there!"
"Not so fast," the bartender says. His or her voice chills your bones. It looks like your exploitation of the Satoshi nSequence payment channel is still fresh in his or her mind. "Look at the txid of the funding transaction that got confirmed."
"What about it?" you ask nonchalantly, as you flip open your desktop computer and open a reputable blockchain explorer.
What you see shocks you.
"What the --- the txid is different! You--- you changed my signature?? But how? I put the only copy of my private key in a sealed envelope in a cast-iron box inside a safe buried in the Gobi desert protected by a clan of nomads who have dedicated their lives and their childrens' lives to keeping my private key safe in perpetuity!"
"Didn't you know?" the bartender asks. "The components of the signature are just very large numbers. The sign of one of the signature components can be changed, from positive to negative, or negative to positive, and the signature will remain valid. Anyone can do that, even if they don't know the private key. But because Bitcoin includes the signatures in the transaction when it's generating the txid, this little change also changes the txid." He or she chuckles. "They say they'll fix it by separating the signatures from the transaction body. They're saying that these kinds of signature malleability won't affect transaction ids anymore after they do this, but I bet I can get my good friend Jihan Wu to delay this 'SepSig' plan for a good while yet. Friendly guy, this Jihan Wu, it turns out all I had to do was slip him 51 drinks and he was willing to mine a tx with the signature signs flipped." His or her grin widens. "I'm afraid your backoff transaction won't work anymore, since it spends a txid that is not existent and will never be confirmed. So here's the deal. You pay me 99% of the funds in the funding transaction, in exchange for me signing the transaction that spends with the txid that you see onchain. Refuse, and you lose 100% of the funds and every other HODLer, including me, benefits from the reduction in coin supply. Accept, and you get to keep 1%. I lose nothing if you refuse, so I won't care if you do, but consider the difference of getting zilch vs. getting 1% of your funds." His or her eyes glow. "GENUFLECT RIGHT NOW."
Lesson learned?

CLTV-protected Spilman Channels

Using CLTV for the backoff branch.
This variation is simply Spilman channels, but with the backoff transaction replaced with a backoff branch in the SCRIPT you pay to. It only became possible after OP_CHECKLOCKTIMEVERIFY (CLTV) was enabled in 2015.
Now as we saw in the Spilman Channels discussion, transaction malleability means that any pre-signed offchain transaction can easily be invalidated by flipping the sign of the signature of the funding transaction while the funding transaction is not yet confirmed.
This can be avoided by simply putting any special requirements into an explicit branch of the Bitcoin SCRIPT. Now, the backoff branch is supposed to create a maximum lifetime for the payment channel, and prior to the introduction of OP_CHECKLOCKTIMEVERIFY this could only be done by having a pre-signed nLockTime transaction.
With CLTV, however, we can now make the branches explicit in the SCRIPT that the funding transaction pays to.
Instead of paying to a 2-of-2 in order to set up the funding transaction, you pay to a SCRIPT which is basically "2-of-2, OR this singlesig after a specified lock time".
With this, there is no backoff transaction that is pre-signed and which refers to a specific txid. Instead, you can create the backoff transaction later, using whatever txid the funding transaction ends up being confirmed under. Since the funding transaction is immutable once confirmed, it is no longer possible to change the txid afterwards.

Todd Micropayment Networks

The old hub-spoke model (that isn't how LN today actually works).
One of the more direct predecessors of the Lightning Network was the hub-spoke model discussed by Peter Todd. In this model, instead of payers directly having channels to payees, payers and payees connect to a central hub server. This allows any payer to pay any payee, using the same channel for every payee on the hub. Similarly, this allows any payee to receive from any payer, using the same channel.
Remember from the above Spilman example? When you open a channel to the bartender, you have to wait around for the funding tx to confirm. This will take an hour at best. Now consider that you have to make channels for everyone you want to pay to. That's not very scalable.
So the Todd hub-spoke model has a central "clearing house" that transport money from payers to payees. The "Moonbeam" project takes this model. Of course, this reveals to the hub who the payer and payee are, and thus the hub can potentially censor transactions. Generally, though, it was considered that a hub would more efficiently censor by just not maintaining a channel with the payer or payee that it wants to censor (since the money it owned in the channel would just be locked uselessly if the hub won't process payments to/from the censored user).
In any case, the ability of the central hub to monitor payments means that it can surveill the payer and payee, and then sell this private transactional data to third parties. This loss of privacy would be intolerable today.
Peter Todd also proposed that there might be multiple hubs that could transport funds to each other on behalf of their users, providing somewhat better privacy.
Another point of note is that at the time such networks were proposed, only unidirectional (Spilman) channels were available. Thus, while one could be a payer, or payee, you would have to use separate channels for your income versus for your spending. Worse, if you wanted to transfer money from your income channel to your spending channel, you had to close both and reshuffle the money between them, both onchain activities.

Poon-Dryja Lightning Network

Bidirectional two-participant channels.
The Poon-Dryja channel mechanism has two important properties:
Both the original Satoshi and the two Spilman variants are unidirectional: there is a payer and a payee, and if the payee wants to do a refund, or wants to pay for a different service or product the payer is providing, then they can't use the same unidirectional channel.
The Poon-Dryjam mechanism allows channels, however, to be bidirectional instead: you are not a payer or a payee on the channel, you can receive or send at any time as long as both you and the channel counterparty are online.
Further, unlike either of the Spilman variants, there is no time limit for the lifetime of a channel. Instead, you can keep the channel open for as long as you want.
Both properties, together, form a very powerful scaling property that I believe most people have not appreciated. With unidirectional channels, as mentioned before, if you both earn and spend over the same network of payment channels, you would have separate channels for earning and spending. You would then need to perform onchain operations to "reverse" the directions of your channels periodically. Secondly, since Spilman channels have a fixed lifetime, even if you never used either channel, you would have to periodically "refresh" it by closing it and reopening.
With bidirectional, indefinite-lifetime channels, you may instead open some channels when you first begin managing your own money, then close them only after your lawyers have executed your last will and testament on how the money in your channels get divided up to your heirs: that's just two onchain transactions in your entire lifetime. That is the potentially very powerful scaling property that bidirectional, indefinite-lifetime channels allow.
I won't discuss the transaction structure needed for Poon-Dryja bidirectional channels --- it's complicated and you can easily get explanations with cute graphics elsewhere.
There is a weakness of Poon-Dryja that people tend to gloss over (because it was fixed very well by RustyReddit):
Another thing I want to emphasize is that while the Lightning Network paper and many of the earlier presentations developed from the old Peter Todd hub-and-spoke model, the modern Lightning Network takes the logical conclusion of removing a strict separation between "hubs" and "spokes". Any node on the Lightning Network can very well work as a hub for any other node. Thus, while you might operate as "mostly a payer", "mostly a forwarding node", "mostly a payee", you still end up being at least partially a forwarding node ("hub") on the network, at least part of the time. This greatly reduces the problems of privacy inherent in having only a few hub nodes: forwarding nodes cannot get significantly useful data from the payments passing through them, because the distance between the payer and the payee can be so large that it would be likely that the ultimate payer and the ultimate payee could be anyone on the Lightning Network.
Lessons learned?

Future

After LN, there's also the Decker-Wattenhofer Duplex Micropayment Channels (DMC). This post is long enough as-is, LOL. But for now, it uses a novel "decrementing nSequence channel", using the new relative-timelock semantics of nSequence (not the broken one originally by Satoshi). It actually uses multiple such "decrementing nSequence" constructs, terminating in a pair of Spilman channels, one in both directions (thus "duplex"). Maybe I'll discuss it some other time.
The realization that channel constructions could actually hold more channel constructions inside them (the way the Decker-Wattenhofer puts a pair of Spilman channels inside a series of "decrementing nSequence channels") lead to the further thought behind Burchert-Decker-Wattenhofer channel factories. Basically, you could host multiple two-participant channel constructs inside a larger multiparticipant "channel" construct (i.e. host multiple channels inside a factory).
Further, we have the Decker-Russell-Osuntokun or "eltoo" construction. I'd argue that this is "nSequence done right". I'll write more about this later, because this post is long enough.
Lessons learned?
submitted by almkglor to Bitcoin [link] [comments]

Bitcoin mining of the binance pool #Binancepool #binance ... CZ Binance CEO Interview - CoinMarketCap Acquisition, Bitcoin Mining Pool, Binance Card, Ripple ODL BINANCE BITCOIN MINING POOL Coming Soon! XRP Not A ... Binance Tutorial deutsch - Anleitung zum Kaufen und ... Bitcoin Halving Theory, History Repeating, Nasdaq + R3, Binance Fiat, Swiss Crypto Association I Spent $100,000 Building a CRYPTOCURRENCY & BITCOIN ... BITCOIN MINERS CAPITULATE!! THIS SHOWS EXACT BTC BUY ZONE BEFORE NEXT PUMP!! Binance Launches Crypto Mining Pool Amid Centralization Concerns Binance CEO Says Bitcoin Mining May Move to Cheaper Places ... Bitcoin Halving Bull Run? Binance Launches Bitcoin Mining Pool - BitPay BUSD - Kim Jong Un BTC Stash

Imagine that you are a Bitcoin miner, and each time you want to enter your block into the blockchain and get a reward you would be given a combination lock and would need to guess the combination in order to enter your block.. Now let’s say that your computing power or hash/rate is the number of combinations you can guess in a second. So the more computing power you have the faster you’d ... Best Bitcoin Mining Software Reviewed. By: Ofir Beigel Last updated: 8/23/20 If you’re thinking of getting into Bitcoin mining, one of the things you’re going to need is a software to run your mining hardware.In this post I’ll review the top Bitcoin mining software available on the market. How to mine bitcoin has always attracted many people for the rewards but the mining idiom had initially perplexed some not of the space. Bitcoin miners achieve mining by solving a computational problem that allows them to chain together blocks of transactions (hence Bitcoin’s famous “blockchain”). Bitcoin mining is deemed to be equivalent in difficulty to actual underground mining and ... In essence, UTXOs define where each blockchain transaction starts and finishes. The UTXO model is a fundamental element of Bitcoin and many other cryptocurrencies. In other words, cryptocurrency transactions are made of inputs and outputs. Anytime a transaction is made, a user takes one or more UTXOs to serve as the input(s). Next, the user provides their digital signature to confirm ownership ... Bitcoin is a peer-to-peer currency based entirely on cryptography. ... Anyone with some computing power can become a miner, however it is increasingly more difficult to mine new Bitcoins. Unlike any fiat currency which can be inflated and multiplied by the government, there is a finite amount of Bitcoins that can be mined. It is only 21 million and the more Bitcoins are mined, the more ... They can also solve Bitcoin blocks faster, which means they are definitely worth looking into. The Antminer D3 is an ASIC miner from Mineshop.eu is a good mid-range miner that has a hash rate of ... Free Cloud Mining - Pros and Cons. When it comes to free Bitcoin cloud mining, the biggest debate is whether it’s worth it or not.. Free cloud mining offers people the ability to pitch into the world of cryptocurrency mining without having to need to invest any initial fees. When you search for “Bitcoin cloud mining free” on Google, hundreds of sites pop up offering their expertise and ... Binance CEO Changpeng Zhao briefly mulled 're-organizing' Bitcoin to exact revenge on the hackers that stole 7,000 BTC from his exchange. Blockchains for cryptoassets such as Bitcoin, Litecoin, Monero or Dogecoin all rely on Proof of Work (PoW) along with specific consensus protocols like the Nakamoto consensus for Bitcoin. Miner competition is critical to the security of PoW blockchains; miners have finite resources and must efficiently allocate hashpower to blockchains with the highest expected revenue 3 . We chose the 4 best Bitcoin mining software options by first reviewing and researching multiple Bitcoin mining software options and then selecting the top contenders. We made these Bitcoin mining software options our top choices based on how easy they were to use, the features and tools they offer, how customizable they are, if you can mine other cryptocurrencies, and more.

[index] [4319] [4209] [7212] [21876] [15303] [23771] [10903] [14811] [22362] [22494]

Bitcoin mining of the binance pool #Binancepool #binance ...

A $2000 investment turned into me spending $100,000 dollars building a custom shed for cryptocurrency and Bitcoin mining. Here's the story of Drew Vosk and t... 🔥 Get the Ledger Nano X to Safely store your Crypto - https://www.ledgerwallet.com/r/acd6 🔥 Become a Channel Member - https://www.youtube.com/channel/UCjpkws... Binance Tutorial deutsch In diesem Video erfährst du wie man auf der Plattform Binance Kryptowährungen handeln kann und gegen Bitcoins kaufen und verkaufen k... Cardano Shelley Genesis Block arrives! Binance starts Mining Pool. 68k Bitcoin on the move - Duration: 8:07. Crypto Daily Update 663 views. 8:07. BITCOIN ON BILLIONS - Ripple XRP New Job Role ... This is an educational video on bitcoin mining of binance pool and not a financial advice. #Binance #BinancePool #Binance pool If you want to sign up to Bina... Leading cryptocurrency exchange Binance launched its mining pool "Binance Pool" on April 27. The pool will operate with zero fees until May 31, after which the rate will be set at 2.5%. The press ... #Binance #Bitcoin #XRP #Crypto #CBDC #Ripple #Coinmarketcap Interview with Binance CEO Changpeng Zhao (CZ). We discuss: - CZ's background, crypto portfolio, not investing in Ethereum - Binance ... Jan.10 -- Binance CEO Zhao Changpeng discusses the challenges exchanges face, possible rules and regulations, and talks about the future for crypto currencie... WARNING: BITCOIN IS ABOUT TO DO SOMETHING IT HASN'T DONE IN 7 YEARS (btc price prediction today news - Duration: 39:09. Crypto Crew University 35,073 views 39:09 Amazon Affiliate Link - (If You Buy Something On Amazon, I Get A Small Commission As A Way To Support The Channel) - (There is NO extra cost for you) https://amzn.to/39MXp4q Computer I Use To ...

#